### Faculty of Health Sciences

### Linear mixed models

Analysis of repeated measurements, 10th March 2015

Julie Lyng Forman & Lene Theil Skovgaard Department of Biostatistics, University of Copenhagen



### Program

#### **Topics:**

- ► Random effects & variance components
- Linear mixed models in general.

Read: Fitzmaurice et al. (2011): chapters 8, 21, 22.

#### **Examples:**

- Random effects ANOVA
- Multi-level models
- Random regression
- Cross-over trials
- Comparison of measurement methods



### Outline

#### General repeated measurements

Random effects ANOVA (the two-level model)

Multilevel models

Linear mixed models (LMMs)

Random regression

Cross-over studies

Comparing measurement methods



### What are repeated measurements?





Repeated measurements refer to data where the same outcome has been measured in different situations (or at different spots) on the same individuals.

► Special case: longitudinal means repeatedly over time.



#### What is clustered data?





Repeated measurements are termed clustered data when the same outcome is measured on groups of individuals from the same families/workplaces/school classes/villages/etc.



### Analysis of repeated measurements

#### Many applications:

- Longitudinal data
- Treatments applied to multiple limbs, teeth, etc within the same person.
- ► Cross-over trials.
- Cluster randomized trials / multi-center studies.
- Comparisons / reliability of measurement methods.

**ATT:** Measurements belonging to the same subject/cluster are correlated. If we fail to take this correlation into account we will experience:

- p-values that are too small or too large.
- confidence intervals that are too wide or too narrow.



### Outline

General repeated measurements

Random effects ANOVA (the two-level model)

Multilevel models

Linear mixed models (LMMs)

Random regression

Cross-over studies

Comparing measurement methods



# One-way analysis of variance – with random variation

### Comparison of k groups or clusters, satisfying:

- ► The groups are of no individual interest and it is of no relevance to test whether they have identical means.
- The groups may be thought of as representatives from a population, that we want to describe.

Measurements belonging to the same subject/cluster tend to be correlated (look alike) due to e.g.

- ► Environmental variation.
  - Between regions, hospitals or countries.
- Biological variation.
  - Between individuals, families or animals.

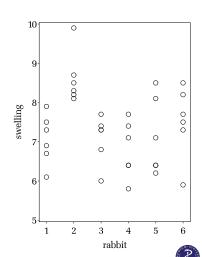


### Example: Rabbit data

- ightharpoonup R = 6 rabbits vaccinated.
- ▶ In S = 6 spots on the back.

Response: swelling in cm<sup>2</sup>

Research question: How much swelling can be expected in reaction to the vaccine?



## Random effects anova (the two-level model)

We let each rabbit have its own level of swelling described as

$$Y_{rs} = A_r + \varepsilon_{rs}$$

▶ We assume that these individual levels are randomly sampled from a normally distributed population,

$$A_r \sim \mathcal{N}(\mu, \omega_B^2)$$

► The error terms are considered to be independent normal,

$$\varepsilon_{rs} \sim \mathcal{N}(0, \sigma_W^2)$$

The rabbit levels are so-called random effects and the variances  $\omega_B^2$  and  $\sigma_W^2$  are so-called variance components describing the variance between rabbits and within rabbits, respectively.



### Implications of random effects anova

All observations are considered as randomly sampled measurements from the **same population**. Thus, the model implies that all measurements follow the same normal distribution:

$$Y_{rs} \sim N(\mu, \omega_B^2 + \sigma_W^2)$$

- ▶ Population mean  $\mu$ , the grand mean.
- ▶ Population variance  $\omega_B^2 + \sigma_W^2$ , the total variation.

**But:** Measurements made on the same rabbit are correlated with the so-called intra-class correlation

$$Corr(y_{r1}, y_{r2}) = \rho = \frac{\omega_B^2}{\omega_B^2 + \sigma_W^2}$$



### Compound symmetry

The implied covariance of the repeated measurements has a compound symmetry-structure:

$$\Sigma = (\omega_B^2 + \sigma_W^2) \cdot \begin{pmatrix} 1 & \rho & \dots & \rho \\ \rho & 1 & \dots & \rho \\ \vdots & \vdots & & \vdots \\ \rho & \rho & \dots & 1 \end{pmatrix}$$

In particular all pairs of spots on the same rabbit are assumed to be equally correlated (with the intra-class correlation).

▶ We say that the spots are exchangeable.

**Note:** If this is not the case, an unstructured covariance migth fit the data better. Say, if some spots are expected to respond more similarly than others.

### Random effects ANOVA in PROC MIXED

```
PROC MIXED DATA=rabbit;
CLASS rabbit spot;
MODEL swelling = / S;
RANDOM rabbit;
/* or REPEATED spot / TYPE=CS SUBJECT=rabbit; */
RUN;
```

#### Covariance Parameter Estimates

Cov Parm Estimate rabbit 0.3304 Residual 0.5842

#### Solution for Fixed Effects

|           |          | Standard |    |         |         |
|-----------|----------|----------|----|---------|---------|
| Effect    | Estimate | Error    | DF | t Value | Pr >  t |
| Intercept | 7.3667   | 0.2670   | 5  | 27.59   | <.0001  |

C+andand



### Estimation of variance components

| Level | Variation | Variance component        | Estimate | %of variation |
|-------|-----------|---------------------------|----------|---------------|
| 1     | Between   | $\omega_B^2$              | 0.3304   | 36%           |
| 2     | Within    | $\sigma_W^{\overline{2}}$ | 0.5842   | 64%           |
|       | Total     | $\omega_B^2 + \sigma_W^2$ | 0.9146   | 100%          |

Asymptotic standard errors can be obtained with:

PROC MIXED COVTEST DATA=rabbit;

- ▶ 95% CI for **Intra**-rabbit variation  $\sigma_W^2$ : (0.37,1.04).
- ▶ 95% CI for **Inter**-rabbit variation  $\omega_B^2$ : (0.06,2.48).

**BUT:** The coverage may be poor in small samples.



### Estimating variance components

In balanced data we have explicit formulae\*:

$$\tilde{\sigma}_W^2 = \mathsf{MS}_W$$
 and  $\tilde{\omega}_B^2 = \mathsf{MS}_B - \frac{\mathsf{MS}_W}{n}$ 

- n is the number of observations in each cluster
- ▶ MS<sub>W</sub> and MS<sub>B</sub> are Mean Squares within and between clusters, defined as in one-way ANOVA.
- \* This is deduced from

$$E(\mathsf{MS}_B) = \omega_B^2 + \frac{\sigma_W^2}{n}$$
$$E(\mathsf{MS}_W) = \sigma_W^2$$



## Describing variation

Typical differences between spots on the **same** rabbit:

$$y_{rs_1} - y_{rs_2} = \varepsilon_{rs_1} - \varepsilon_{rs_2}$$
$$\sim N(0, 2\omega_W^2)$$

▶ Normal region:  $\pm 2\sqrt{2\omega_W^2} = \pm 2.16~cm^2$ 

Typical differences between spots on **different** rabbits:

$$y_{r_1s_1} - y_{r_2s_2} = \alpha_{r_1} - \alpha_{r_2} + \varepsilon_{r_1s_1} - \varepsilon_{r_2s_2}$$
  
  $\sim N(0, 2\sigma_B^2 + 2\omega_W^2)$ 

Normal region:  $\pm 2\sqrt{2\sigma_B^2 + 2\omega_W^2} = \pm 2.70 \ cm^2$ 



## Why not use traditional one-way anova?

```
PROC GLM DATA=rabbit;
CLASS rabbit spot;
MODEL swelling = rabbit / NOINT SOLUTION;
ESTIMATE 'grand mean' rabbit 0.167 0.167 0.167 0.167 0.167;
RUN;
```

- ▶ Test of  $H_0$ :  $\mu_1 = \ldots = \mu_6$ : P = 0.004.
- ► Estimate of grand mean: 7.367 (0.127)

**But**: We are **not** interested in these particular 6 rabbits, only in rabbits in general, as a **species**!

► Estimate from mixed model: 7.367 (0.267)



## One-way anova with and without random variation

#### Classical one-way anova

- ▶ The rabbit means  $\mu_r$  are fixed parameters,
  - supposedly of an interest of their own.
- We say that the rabbit factor is a fixed effect.

### Random effects one-way anova

- ▶ The rabbit levels  $A_r$  are considered random and their population mean  $\mu$  and variance  $\omega_B^2 + \sigma_W^2$  is the major interest.
- We say that the rabbit factor is a random effect.
- ▶ (If data is from a pilot study used in the planning of some trial, the intra-class correlation will also be of interest).



### Fixed or random effect?

How do we decide whether a **factor** should be modeled as fixed or random?

#### **Fixed**

- ► The specific values of the factor have been predetermined when planning the study.
- ▶ Allows inference for these particular values only.
- ▶ Demands a decent number of observations in each group.

#### Random

- ▶ A representative sample of values of the factor is present.
- ▶ Allows inference to be extended beyond the values in the experiment and to the population they were sampled from.



### Estimation of individual rabbit means

Sometimes estimates of individual random effects are used for e.g. prediction of future disease status.

How do we estimate them?

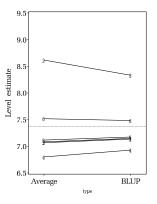
- ▶ Simple averages  $\bar{y}_{r_{\cdot}}$  of the individual measurements.
- Best unbiased linear predictors (BLUPs) are weighted averages of the individual and the population mean:

$$\frac{\tilde{\omega}_B^2}{\tilde{\omega}_B^2 + \frac{\tilde{\sigma}_W^2}{S}} \bar{y}_{r.} + \frac{\frac{\tilde{\sigma}_W^2}{S}}{\tilde{\omega}_B^2 + \frac{\tilde{\sigma}_W^2}{S}} \bar{y}_{..}$$

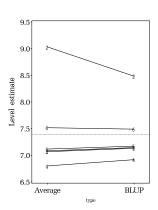
They have been **shrinked** towards the grand mean,  $\bar{y}_{..}$ ; We are borrowing strength from the neighbours.



## BLUPs vs averages Full data



#### Reduced data



Note: We see larger shrinkage for rabbit no. 2 when the 3 smallest measurements from this rabbit have been removed.

### Outline

General repeated measurements

Random effects ANOVA (the two-level model)

#### Multilevel models

Linear mixed models (LMMs)

Random regression

Cross-over studies

Comparing measurement methods



## General variance component models

Generalisations of ANOVA and GLM models involving several sources of random variation, so-called variance components.

#### **Examples of sources of random variation:**

- ► Environmental variation.
  - Between regions, hospitals or countries.
- Biological variation.
  - Between individuals, families or animals.
- Within-individual variation.
  - Between arms, teeth, days.
- Variation due to uncontrollable circumstances.
  - ► E.g. time of day, temperature, observer.
- Measurement error.



### Multilevel models

Variance component models are also called multilevel models.

- ► Levels are most often hierarchical.
- ▶ We have variation, i.e. a variance component, on each level.
- ► And possibly systematic effects (covariates) on each level.

| individual observation | $\rightarrow$ | context/cluster | $\rightarrow$ | context/cluster |
|------------------------|---------------|-----------------|---------------|-----------------|
| level 1                | $\rightarrow$ | level 2         | $\rightarrow$ | level 3         |
| students               | $\rightarrow$ | classes         | $\rightarrow$ | schools         |
| patient                | $\rightarrow$ | clinic          | $\rightarrow$ | regions         |
| time                   | $\rightarrow$ | subject         | $\rightarrow$ | _               |
| spot                   | $\rightarrow$ | rabbit          | $\rightarrow$ |                 |

### Example: A three-level model

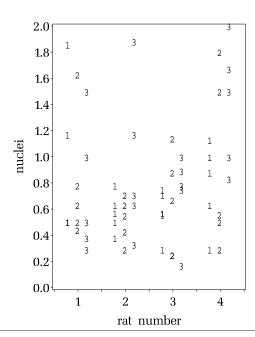
**Outcome:** Number of nuclei per cell in the rat pancreas (used for the evaluation of cytostatica)

- ightharpoonup R = 4 rats.
- ightharpoonup S = 3 sections for each rat.
- ightharpoonup F=5 randomly chosen fields from each section.

| level 1    | $\rightarrow$ | level 2  | $\rightarrow$ | level 3    |
|------------|---------------|----------|---------------|------------|
| fields     | $\rightarrow$ | sections | $\rightarrow$ | rats       |
| $\sigma^2$ |               | $	au^2$  |               | $\omega^2$ |

Reference: Henrik Winther Nielsen, Inst. Med. Anat.





### Estimated variation and correlation

| Level | Variation           | Estimate       |
|-------|---------------------|----------------|
| 3     | Rats $(\omega^2)$   | 0.0179 (8.2%)  |
| 2     | Sections $(	au^2)$  | 0.0029 (1.3%)  |
| 1     | Fields $(\sigma^2)$ | 0.1968 (90.4%) |
|       | Total               | 0.2176 (100%)  |

| Measurements on                     | Correlation                                             | Typical differences                                       |
|-------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|
| Different rats Different sections   | 0                                                       | $\pm 2\sqrt{2(\omega^2 + \tau^2 + \sigma^2)} = \pm 1.319$ |
| of the same rat                     | $\frac{\omega^2}{\omega^2 + \tau^2 + \sigma^2} = 0.082$ | $\pm 2\sqrt{2(\tau^2 + \sigma^2)} = \pm 1.264$            |
| Different fields of the same sectio | 2 . 2                                                   | $\pm 2\sqrt{2\sigma^2} = \pm 1.255$                       |

### Merits of multilevel models

We get a better understanding of the various sources of variation.

Effects within may be estimated more precisely (higher power), since some sources of variation are eliminated, e.g. by making comparisons within a family. This is analogous to the **paired design** situation.

When planning investigations, estimates of the variance components are needed in order to compare the power of various designs, and help us decide

- ▶ How many replicates do we need at each level?
- Should we randomize entire clusters or randomize within the clusters?

## Design considerations

(Note the analogy with cluster-randomized trials.)

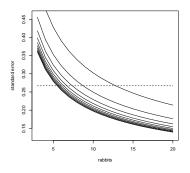
#### Plan an experiment with:

- ▶ R rabbits.
- ► S spots for each rabbit.
- ightharpoonup R imes S measurements.

Std. error of grand mean,

$$\operatorname{Var}(\bar{y}) = \frac{\omega_B^2}{R} + \frac{\sigma_W^2}{RS},$$

decreases with R and S.



The different curves correspond to *S* varying from 1 to 10.

## Effective sample size

How many rabbits would we need to obtain the same precision in estimating the grand mean if we had **only one measurement** on each of  $R_1$  rabbits?

Solve the equation for  $Var(\overline{y})$  to get:

$$R_1 = \frac{R \times S}{1 + \rho(S - 1)}$$

where  $\rho$  is the within rabbit correlation.

► Estimate: 
$$\rho = \frac{\omega_B^2}{\omega_B^2 + \sigma_W^2} = \frac{0.3304}{0.3304 + 0.5842} = 0.361 \Rightarrow R_1 = 12.8$$

I.e. one measurement on each of thirteen rabbits gives the **same precision** as six measurements on each of six rabbits.

## Case study: Cortisol

Outcome: Concentration of cortisol in salvia samples taken

morning and evening in workers in Aarhus amt and kommune in 2007 (3536 participants) with similar

follow-up in 2009 (2408 participants)

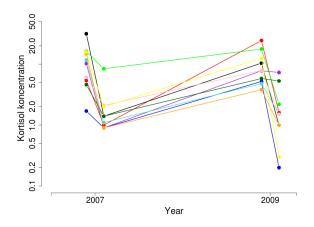
Interest: effect of stressors: lifeevents, Effort Reward Index

| level | variation                   | covariates             |
|-------|-----------------------------|------------------------|
| 3     | between persons             | gender, age            |
| 2     | within person: between days | bmi, stressors, year   |
| 1     | within person: within days  | time (morning/evening) |



### Sample data

### From 8 randomly selected men:



NOTE: concentrations on logarithmic scale.



## Multilevel analysis

```
PROC MIXED DATA=prism COVTEST; WHERE sex EQ 'male';
  CLASS id year time;
  MODEL logcortisol = time / SOLUTION CL DDFM=SATTERTH;
  RANDOM id id*year;
RUN;
```

#### Covariance Parameter Estimates

| Cov Parm | Estimate | Std.Error | Z Value | Pr > 2  |
|----------|----------|-----------|---------|---------|
| id       | 0.05993  | 0.01266   | 4.73    | <.0001  |
| id*year  | 0        |           |         |         |
| Residual | 0.5385   | 0.01794   | 30.01   | < .0001 |

#### The between days-variance component estimate is a zero!

Level 2 covariates (stressors) can only have very little impact on individual cortisol koncentrations!

### Negative variance components

In case one of the variance component estimates becomes negative, SAS repports a zero.

#### What does it mean?

- The zero-estimate may be a chance finding due to statistical uncertainty.
- Or it might be the result of truly negative correlation within clusters - e.g. from competition (plants grown in same pot).

#### What can we do about it?

- ▶ Re-fit the model without the problematic random effect.
- ▶ Use a covariance pattern model which allows for negative correlation (e.g. an unstructured covariance).
- ▶ Include more covariates at the lower levels.



### Estimated time-effect

#### Solution for Fixed Effects

|           |      |          | Standard |      |         |         |       |        |        |
|-----------|------|----------|----------|------|---------|---------|-------|--------|--------|
| Effect    | time | Estimate | Error    | DF   | t Value | Pr >  t | Alpha | Lower  | Upper  |
| Intercept |      | 0.4106   | 0.02209  | 448  | 18.59   | <.0001  | 0.05  | 0.3672 | 0.4540 |
| time      | morn | 2.0137   | 0.02872  | 1305 | 70.12   | <.0001  | 0.05  | 1.9573 | 2.0700 |
| time      | even | 0        |          |      |         |         |       |        |        |

Type 3 Tests of Fixed Effects

|        | Num | Den  |         |        |
|--------|-----|------|---------|--------|
| Effect | DF  | DF   | F Value | Pr > F |
| time   | 1   | 1305 | 4916.89 | <.0001 |

Estimates show that median levels of kortisol is about  $\exp(2.0137) \simeq 7.49$  times higher in the morning than in the evening.

We should account for exact time of measurement!



### Outline

General repeated measurements

Random effects ANOVA (the two-level model)

Multilevel models

Linear mixed models (LMMs)

Random regression

Cross-over studies

Comparing measurement methods



# Specification of linear mixed models (LMMs)

Mixed refers to mixed fixed and random effects.

#### Systematic variation

covariates: time, treatment, gender, age, etc., describing population parameters.

#### Random variation:

- Random effects, describing subject specific parameters.
- Serial correlation
- Measurement error

**Interactions** between systematic and random effects are always random effects.

## Technical model description for LMMs

Model repeated outcomes on subject/cluster i as:

$$Y_i = X_i \beta + Z_i b_i + \varepsilon_i$$

- ▶ Systematic effects  $\beta$  with designmatrices  $X_i$ .
- ▶ Random effects b<sub>i</sub> with designmatrices Z<sub>i</sub>.
- lacktriangle Possibly dependent residual error terms  $\varepsilon_i$

We assume that the  $b_i$ 's and  $\varepsilon_i$ 's are independent normally distributed with mean zero and covariance matrices given by:

- ▶ The G-matrix:  $Var(b_i) = G$ .
- ▶ The R-matrix:  $Var(\varepsilon_i) = R$ .



## Implied covariance for LMMs

The covariance of the repeated measurements on subject/cluster  $\it i$  is given by the general formula:

$$V_i = Z_i^T G Z_i + R_i$$

#### Note:

- ► This is the so-called V-matrix.
- Print with option vcorr in proc mixed.



#### SAS: PROC MIXED

model: describes the mean value structure

(i.e. covariates / fixed effects)

random: describes the random effects

repeated: describes the residual covariance.

Very flexible modeling framework!

**Example:** It is possible to model, e.g.

- ▶ longitudinal series of measurements (2 levels) . . .
- with repeated series on each subject and with different treatments along the way (3 levels) . . .
- and subjects belonging to different clusters (4 levels).



# Nonidentifiability

#### Warning: Make sure you understand your model!

 Modeling random effects together with a residual error covariance may result in unidentifiable covariance parameters, i.e. nonconvergence, unless done with some care.

#### **Example:** Compound symmetry can be specified as either of:

- ► RANDOM id;
- RANDOM intercept / SUBJECT=id;
- ▶ REPEATED time / TYPE=CS SUBJECT=id;

in case two of these lines are included in the same program, it will not converge.



### Outline

General repeated measurements

Random effects ANOVA (the two-level model)

Multilevel models

Linear mixed models (LMMs)

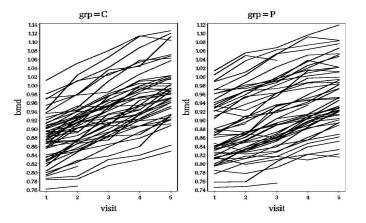
#### Random regression

Cross-over studies

Comparing measurement methods



#### Calcium data



The time course looks reasonably linear, but maybe the individual girls have different growth rates ...



# Random regression

We let each girl have her own level  $A_i$  and her own slope  $B_i$ 

We **assume** these individual 'parameters',  $A_i$  and  $B_i$ ,

▶ the random effects

follow a bivariate normal distribution in the population

$$\begin{pmatrix} A_i \\ B_i \end{pmatrix} \sim N_2 \begin{pmatrix} \alpha_{g(i)} \\ \beta_{g(i)} \end{pmatrix}, \begin{pmatrix} \tau_a^2 & \omega_{ab} \\ \omega_{ab} & \tau_b^2 \end{pmatrix} \end{pmatrix}$$

The covariance is the so-called G-matrix:

▶ it describes the **population variance** of the lines, i.e. the inter-individual variation.



# PROC MIXED: random regression

```
PROC MIXED DATA=calcium;
CLASS grp girl;
MODEL bmd=visit1 grp*visit1 / SOLUTION DDFM=SATTERTHWAITE;
RANDOM intercept visit1 / TYPE=UN SUBJECT=girl(grp) G;
RUN;
```

Individual intercepts and slopes must be specified in the random-statement.

- ► Here visit is used as a continuous covariate, with the intercept moved to visit=1. Due to randomization at baseline the main effect of grp omitted so that intercepts are the same in both groups.
- ► Note that type=un refers to a unstructured specification of the G-matrix. If it is omitted, we may experience convergence problems and sometimes totally incomprehensible results.

# Output from random regression

#### Estimated G Matrix

| Row | Effect    | grp | girl | Coll     | Co12     |
|-----|-----------|-----|------|----------|----------|
| 1   | Intercept | C   | 101  | 0.004155 | 0.000051 |
| 2   | visit1    | C   | 101  | 0.000051 | 0.000048 |

#### Covariance Parameter Estimates

Cov Parm Subject Estimate Residual 0.000125

#### Fit Statistics

-2 Res Log Likelihood -2347.7 AIC (smaller is better) -2339.7

#### Solution for Fixed Effects

| Effect     | grp | Estimate | StdError | DF   | t Value | Pr >  t |
|------------|-----|----------|----------|------|---------|---------|
| Intercept  |     | 0.8752   | 0.006149 | 111  | 142.32  | <.0001  |
| visit1     |     | 0.02245  | 0.001097 | 96   | 20.46   | <.0001  |
| visit1*grp | C   | 0.004429 | 0.001570 | 96.5 | 2.82    | 0.0058  |
| wisit1*arn | D   | 0        |          |      |         |         |

We find an extra increase in BMD of  $0.0044~(0.0016)~g/cm^3$  per half year, when giving calcium supplement.



## Implied covariance

The random regression model implies a particular covariancestructure:

$$Cov(Y_{ij}, Y_{ik}) = Cov(A_i + B_i t_j + \varepsilon_{ij}, A_i + B_i t_k + \varepsilon_{ik})$$

$$= Var(A_i) + (t_j + t_k)Cov(B_i, A_i) + t_j t_k Var(B_i)$$

$$= \tau_a^2 + (t_j + t_k)\omega_{ab} + t_j t_k \tau_b^2$$

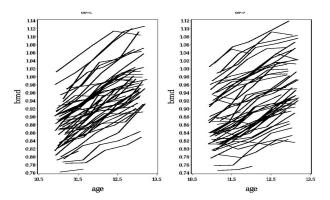
Option v and vcorr makes SAS print the V-matrix and the associated correlation matrix.

Estimated V Matrix for girl(grp) 101 C

| Row | Col1     | Col2     | Col3     | Col4     | Col5     |
|-----|----------|----------|----------|----------|----------|
| 1   | 0.004280 | 0.004207 | 0.004258 | 0.004309 | 0.004360 |
| 2   | 0.004207 | 0.004430 | 0.004405 | 0.004503 | 0.004602 |
| 3   | 0.004258 | 0.004405 | 0.004676 | 0.004698 | 0.004844 |
| 4   | 0.004309 | 0.004503 | 0.004698 | 0.005017 | 0.005086 |
| 5   | 0.004360 | 0.004602 | 0.004844 | 0.005086 | 0.005453 |



## Nonequidistant time points



- ► The girls are only seen **approximately twice a year**.
- ► Perhaps we get better estimates of the slopes when replacing visit with the actual age of the girl.



# Random regression, using actual age

#### Estimated G Matrix

| Row | Effect    | grp | girl | Col1     | Col2     |
|-----|-----------|-----|------|----------|----------|
| 1   | Intercept | C   | 101  | 0.004208 | 0.000095 |
| 2   | age11     | C   | 101  | 0.000095 | 0.000179 |

#### Covariance Parameter Estimates

Cov Parm Subject Estimate Residual 0.000124

#### Fit Statistics

-2 Res Log Likelihood -2356.3 AIC (smaller is better) -2348.3

#### Solution for Fixed Effects

| Effect    | grp | Estimate | StdError | DF   | t Value | Pr >  t |
|-----------|-----|----------|----------|------|---------|---------|
| Intercept |     | 0.8721   | 0.006193 | 111  | 140.84  | <.0001  |
| age11     |     | 0.04534  | 0.002151 | 96.2 | 21.08   | <.0001  |
| age11*grp | C   | 0.008803 | 0.003074 | 96.8 | 2.86    | 0.0051  |
| ago11*grn | D   | 0        |          |      |         |         |

In this model, we quantify the effect of a calcium supplement to  $0.0088 (0.0031) \text{ g/cm}^3 \text{ per year}$ .

## Results from random regression

| Time variable | Difference in Slopes | P-value |
|---------------|----------------------|---------|
| visit1        | 0.0089 (0.0031)      | 0.0051  |
| age11         | 0.0044 (0.0016)      | 0.0058  |
| Р             | 0.37                 | 0.0048  |

Seemingly steeper slopes than when visit was used as the time-variable.

▶ Due to quantificantion (per year vs per 1/2 year)!

**Note:** In some cases replacing proxy age with exact age would result in steeper slopes due to bias reduction (recall measurement error in the independent variable causes bias towards the null).



# Modeling the covariance

Random regression implies a particular covariance pattern.

▶ Does this fit the data well?

#### No benchmark for model comparisons:

An unstructured covariance cannot be esimated from non-equidistant data!

Instead, non-nested models can be compared using Akaikes information criterion (AIC) which balances goodness of fit against model complexity.

Smaller values of AIC indicates a better model fit.



## Non-equidistant covariance patterns

In case subject are measured at individual or otherwise non-equally spaced time points only a limited number of stationary covariance pattern models are available:

- ► The variance is **constant over time**.
- ► The correlation **depend only on the time-distance** between the observations.

| proc mixed     | $Cov(Y_{ij}, Y_{ik})$                                                           | no.   |
|----------------|---------------------------------------------------------------------------------|-------|
| type=          |                                                                                 | param |
| CS             | $\sigma^2[I\{j=k\} + \rho \cdot I\{j \neq k\}]$                                 | 2     |
| SP(POW)(ctime) | $\sigma^2 ho^{ t_{ij}-t_{ik} }$                                                 | 2     |
| SP(GAU)(ctime) | $\sigma^2 e^{- t_{ij}-t_{ik} ^2/\gamma^2}$                                      | 2     |
| SP(LIN)(ctime) | $\sigma^{2}(1 - \rho t_{ik} - t_{ij} ) \cdot I\{\rho t_{ik} - t_{ij}  \le 1\}]$ | 2     |

The ctime-variable must be a numerical variable in SAS.



#### Tests of treatment effect

Comparison of slopes for different covariance structures:

| Covariance structure   | AIC     | Cov.par. | Difference in slopes | Р        |
|------------------------|---------|----------|----------------------|----------|
| Independence           | -1251.3 | 1        | 0.0094 (0.0086)      | 0.27     |
| Compound symmetry      | -2253.9 | 2        | 0.0091 (0.0020)      | < 0.0001 |
| Power (Autoregressive) | -2374.3 | 2        | 0.0099 (0.0030)      | 0.0014   |
| Random<br>Regression   | -2348.3 | 4        | 0.0088 (0.0031)      | 0.0051   |

► Confidence intervals and tests depend on the covariance!



### Outline

General repeated measurements

Random effects ANOVA (the two-level model)

Multilevel models

Linear mixed models (LMMs)

Random regression

Cross-over studies

Comparing measurement methods



# Example: Cross-over study of headache

Patients with chronic headache are randomized into two groups:

- Both groups receive LNMMA and placebo, on two different days, with a suitable wash-out period in-between
- ► Group G1 was treated first with placebo (period 1), and then with LNMMA (period 2)
- ► Group G2 was treated first with LNMMA (period 1), and then with placebo (period 2)

Pain was measured subjectively on a VAS-scale (small is good), at baseline and at 30, 60, 90 and 120 minutes after treatment.

Ashina, Lassen, Bendtsen, Jensen og Olesen (1999), Lancet, pp.287-289



# Picture ignoring period effect and pairing

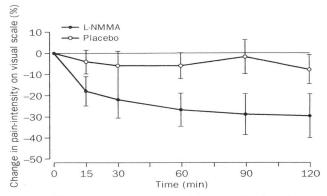


Figure 2: Mean percentage change from baseline in pain intensity on 100 mm visual analogue scale Bars=SE.



# Model building for cross over study

#### Fixed effect:

- ▶ time, treat treat\*time, period
- possibly a carry-over effect: treat\*period(\*time)?

#### Covariance structure:

We expect that observations from the same period (and same patient) are more strongly correlated when they are close in time, e.g.

```
RANDOM patient;
REPEATED time / TYPE=SP(POW)(time) LOCAL
SUBJECT=patient*period;
```

where LOCAL adds an additional measurement error.



#### Extract data

Unfortunately, we do not have access to the full data with repeated measurements over time.

**New outcome**: Difference between average follow-up measurements and baseline,

$$Y_{30} + Y_{60} + Y_{120} - 3Y_0$$

(recall, for this to be efficient the correlation must be strong).

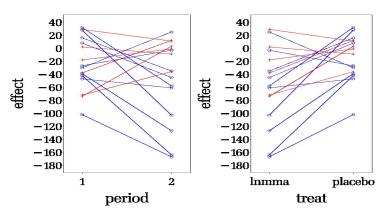
Analysis Variable : effect

| treat   | period | N<br>Obs | N       | Mean                       | Std Dev                  |
|---------|--------|----------|---------|----------------------------|--------------------------|
| lnmma   | 1 2    | 6<br>10  | 6<br>10 | -28.5000000<br>-73.8000000 | 40.9865832<br>65.0022222 |
| placebo | 1 2    | 10<br>6  | 10<br>6 | -20.3000000<br>-3.3333333  | 41.5452899<br>17.8063659 |



## Observations vs. period and treatment

**Legend:** Group G1 (P+A), Group G2 (A+P)

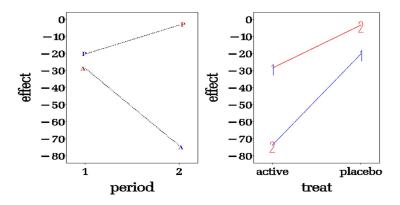


Correlation looks reasonably strong.



## Average over patients

A, P denote the treatments, 1 and 2 denote the periods



Seemingly much larger treatment effect in period 2.



# Model for cross-over study

For subject i, treatment t and period p:

$$Y_{tpi} = \alpha + \beta_t + \gamma_p + \delta_{tp} + b_i + \varepsilon_{tpi}$$

- $b_i \sim N(0, \omega_B^2)$  are the random subject effect
- $\varepsilon_{tpi} \sim N(0, \sigma_W^2)$  are the residuals
- $\delta_{tp}$  is the carry-over effect.

**Parameter of interest:** Treatment effect in period 1.



### Coded as a mixed effects model

```
PROC MIXED DATA=ashina;
CLASS patient group treat period;
MODEL effect=treat period treat*period / S CL DDFM=SATTERTH;
RANDOM intercept / SUBJECT=patient(group);
RUN;
```

#### Solution for Fixed Effects

|              |         |        |          | Standard |    |         |         |
|--------------|---------|--------|----------|----------|----|---------|---------|
| Effect       | treat   | period | Estimate | Error    | DF | t Value | Pr >  t |
| Intercept    |         |        | -3.3333  | 19.4487  | 14 | -0.17   | 0.8664  |
| treat        | lmmma   |        | -70.4667 | 24.6009  | 14 | -2.86   | 0.0125  |
| treat        | placebo |        | 0        |          |    |         |         |
| period       |         | 1      | -16.9667 | 24.6009  | 14 | -0.69   | 0.5017  |
| period       |         | 2      | 0        |          |    |         |         |
| treat*period | lmmma   | 1      | 62.2667  | 40.8798  | 14 | 1.52    | 0.1500  |
| treat*period | lmmma   | 2      | 0        |          |    |         |         |
| treat*period | placebo | 1      | 0        |          |    |         |         |
| treat*period | placebo | 2      | 0        |          |    |         |         |



## Interpretation of the carry-over effect

The carry-over effect is usually interpreted as an additional effect of placebo when given after the active treatment.

Estimate 62.3, with 95% CI (-25.4, 149.9), i.e. nonsignificant.

The carry-over effect (placebo following active) has a positive value, corresponding to a worsening of the headache.

This could be explained as a psychological effect, in the sense that subjects expect something better (namely what they experienced in the previous period).



# Traditional approach

### First test the hypothesis $H_0: \delta = 0$ (no carry-over effect):

- ▶ Unpaired T-test (G1 vs G2) with the sum of the two effects as outcome, since the group means are:
  - G1:  $2\alpha + \beta + \gamma$
  - $\qquad \qquad \mathbf{G2:} \ 2\alpha + \beta + \gamma + \delta$

### If this is accepted, test $H_1: \beta = 0$ (no treatment effect):

- ▶ Unpaired T-test (G1 vs G2) with the difference between the two effects (P1-P2) as outcome, since the group means are:
  - ► G1 (P+A):  $(\alpha + \beta + \gamma) \alpha = \beta + \gamma$
  - ► G2 (A+P):  $(\alpha + \gamma) (\alpha + \beta) = \gamma \beta$
- ► And report the estimated treatment effect.

But what if there is a carry-over effect?



#### Conclusion on treatment effect

#### Depends on your protocol!

| Method   | Effect | Confidence Interval | P-value |
|----------|--------|---------------------|---------|
| Period 1 | -8.20  | (-53.99,37.59)      | 0.71    |
| Period 2 | -70.47 | (-129.40,-11.55)    | 0.022   |
| Joint*   | -39.33 | (-68.70,-9.97)      | 0.012   |

<sup>\*</sup>assuming no carry-over effect



### Outline

General repeated measurements

Random effects ANOVA (the two-level model)

Multilevel models

Linear mixed models (LMMs)

Random regression

Cross-over studies

Comparing measurement methods



# Comparing measurement devices

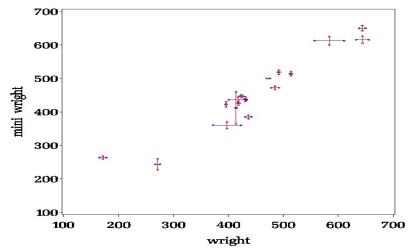
**Example:** Peak expiratory flow rate, I/min:

▶ 17 subjects, 2 measurement devices, two replicates with **each method**.

| subject | Wr        | Wright    |           | Vright    |
|---------|-----------|-----------|-----------|-----------|
| id      | $Y_{1p1}$ | $Y_{1p2}$ | $Y_{2p1}$ | $Y_{2p2}$ |
| 1       | 494       | 490       | 512       | 525       |
| 2       | 395       | 397       | 430       | 415       |
| 3       | 516       | 512       | 520       | 508       |
|         |           |           |           | .         |
|         |           |           |           | .         |
|         |           |           |           |           |
| 15      | 178       | 165       | 259       | 268       |
| 16      | 423       | 372       | 350       | 370       |
| 17      | 427       | 421       | 451       | 443       |
| Average | 450.35    | 445.41    | 452.47    | 455.35    |
| SD      | 116.31    | 119.61    | 113.12    | 111.32    |

Reference: Bland and Altman, Lancet (1986).







## Aim of investigation

Quantify the **precision** of each measuring device

Variability / reproducibility.

Quantify the agreement between the two devices

- ▶ Bias of one method compared to the other.
- Variance of one method compared to the other.

Can the devices be used interchangably in clinic?



# Simple approaches

#### For reliability

- Compare the replicate measurements in Bland-Altman plots\* with limits of agreement, i.e.
  - Plot of difference in measurements vs average of measurements.
  - ▶ 95% normal range for typical differences.
- for each method separately.

#### For method comparison

- Compare averages in a Bland-Altman plot?
- Not good unless you also do averages in clinic!
- \* See: Bland & Altman, Lancet (1986).



# Variance component model?

| level | variation                     | covariates |
|-------|-------------------------------|------------|
| 3     | between subjects $(\sigma^2)$ |            |
| 2     | between methods $(	au^2)$     | method     |
| 1     | within methods $(\omega^2)$   |            |

#### Specified as:

$$Y_{ijk} = \mu_j + A_i + B_{ij} + \varepsilon_{ijk}$$

- $A_i \sim \mathcal{N}(0, \sigma^2)$  for subjects  $i = 1, \dots, 17$ ,
- ▶  $B_{ij} \sim \mathcal{N}(0, \tau^2)$  for methods j = 1, 2,
- $\varepsilon_{ijk} \sim \mathcal{N}(0, \omega^2)$  for replicate k = 1, 2.



## Implied covariance structure

▶ We have 4 measurements on each subject

Covariance matrix with ordering (wright1, wright2, mini1, mini2):

$$\begin{pmatrix} \sigma^2 + \tau^2 + \omega^2 & \sigma^2 + \tau^2 & \sigma^2 & \sigma^2 \\ \sigma^2 + \tau^2 & \sigma^2 + \tau^2 + \omega^2 & \sigma^2 & \sigma^2 \\ \sigma^2 & \sigma^2 & \sigma^2 + \tau^2 + \omega^2 & \sigma^2 + \tau^2 \\ \sigma^2 & \sigma^2 & \sigma^2 + \tau^2 & \sigma^2 + \tau^2 + \omega^2 \end{pmatrix}$$

- ▶ We have stronger correlation between measurements made with the same method than with different methods.
- ► And same variance for both methods.



## Analysis

```
PROC MIXED DATA=wright;
CLASS method id;
MODEL flow=method / SOLUTION CL;
RANDOM intercept method / SUBJECT=id;
RUN;
```

Solution for Fixed Effects

| Effect    | method | Estimate | Standard<br>Error | DF | t Value | Pr >  t |
|-----------|--------|----------|-------------------|----|---------|---------|
| Intercept |        | 447.88   | 27.7519           | 16 | 16.14   | <.0001  |
| method    | mini   | 6.0294   | 8.0532            | 16 | 0.75    | 0.4649  |
| method    | wright | 0        |                   |    |         |         |

No evidence of **systematic** differences between the measurement methods.

## Estimated variance components

| Covariance | Parameter | Estimates |
|------------|-----------|-----------|
| Cov Parm   | Subject   | Estimate  |
| Intercept  | id        | 12542     |
| method     | id        | 393.57    |
| Residual   |           | 315.37    |

Fit Statistics
-2 Res Log Likelihood 676.0
AIC (smaller is better) 681.6

What does this tell us about the precision of the measurements?



# Typical differences

Between replicate measurements using the same method:

$$Y_{ijk_1} - Y_{ijk_2} = \varepsilon_{ijk_1} - \varepsilon_{ijk_2}$$
  
 $\sim \mathcal{N}(0, 2\omega^2)$ 

Limits-of-agreement:  $\pm 2\sqrt{2\omega^2} \simeq \pm 50.23$ .

Between measurements using the different methods:

$$Y_{ij_1k_1} - Y_{ij_2k_1} = \mu_{j_1} - \mu_{j_2} + B_{ij_1} - B_{ij_2} + \varepsilon_{ij_1k_1} - \varepsilon_{ij_2k_1}$$
$$\sim \mathcal{N}(\mu_{j_1} - \mu_{j_2}, 2\tau^2 + 2\omega^2)$$

Limits-of-agreement:  $\mu_1 - \mu_2 \pm 2\sqrt{2\tau^2 + 2\omega^2} \simeq 6.03 \pm 75.31$ .

(where we include the non-significant systematic difference).



# Comparing precisions

We need a more general model:

$$Y_{ijk} = \mu_j + A_{ij} + \varepsilon_{ijk}$$

- $A_i \sim \mathcal{N}(0, \Sigma)$  for subjects  $i = 1, \dots, 17$ ,
- $\varepsilon_{ijk} \sim \mathcal{N}(0, \omega_j^2)$  for replicate k = 1, 2.
- bivariate random effect.
- method-dependent residual variance.



# **Analysis**

```
PROC MIXED DATA=wright;
CLASS method id;
MODEL flow=method / SOLUTION CL;
RANDOM method / TYPE=UN SUBJECT=id G;
REPEATED / TYPE=simple GROUP=method SUBJECT=id*method;
RUN;
```

#### Covariance Parameter Estimates

| Cov Parm | Subject   | Group         | Estimate |
|----------|-----------|---------------|----------|
| UN(1,1)  | id        |               | 12188    |
| UN(2,1)  | id        |               | 12542    |
| UN(2,2)  | id        |               | 13683    |
| Residual | method*id | method mini   | 396.44   |
| Residual | method*id | method wright | 234.29   |

#### Fit Statistics

| -2 Res Log Likelihood   | 673.8 |
|-------------------------|-------|
| ATC (smaller is better) | 683.8 |



# Comparing precisions

#### Reproducibility (typical differences):

Wright: 
$$\hat{\omega}_1^2 = 234.29 \ \to \ \pm 2\sqrt{2\omega_1^2} \simeq \pm 43.3$$

Mini: 
$$\hat{\omega}_2^2 = 396.44 \rightarrow \pm 2\sqrt{2\omega_2^2} \simeq \pm 56.3$$

Seemingly Wright is more precise, but is the difference significant?

$$F = \frac{396.44}{234.29} = 1.69 \sim F(17, 17) \to P = 0.14$$

Don't form too firm a conclusion with too small data.



## Overall comparison

#### Solution for Fixed Effects

| Effect    | method | Estimate | Standard<br>Error | DF | t Value | Pr >  t |
|-----------|--------|----------|-------------------|----|---------|---------|
| Intercept |        | 447.88   | 28.4914           | 32 | 15.72   | <.0001  |
| method    | mini   | 6.0294   | 8.0532            | 32 | 0.75    | 0.4595  |
| method    | wright | 0        |                   |    |         |         |

No evidence of **systematic** differences between the two methods.

#### Typical differnces between the two methods:

$$Y_{ij_1k_1} - Y_{ij_2k_1} = \mu_{j_1} - \mu_{j_2} + A_{ij_1} - A_{ij_2} + \varepsilon_{ij_1k_1} - \varepsilon_{ij_2k_1}$$

$$\sim \mathcal{N}(\mu_{j_1} - \mu_{j_2}, \sigma_1^2 + \sigma_2^2 - 2\sigma_{12} + \omega_1^2 + \omega_2^2)$$

Limits-of-agreement:  $6.0 \pm 75.3 = (-69.3, 81.3)$ .



#### The end



I hope you have enjoyed the course!



Suggestions for  $\ensuremath{\mathsf{improvements}}$  are warmly welcomed.